Fossil Fuel Companies Say H2 Made From Natural Gas a Climate Solution

A committee of climate scientists and environmental officials deliberated over how to drastically cut New York State’s carbon footprint last summer, natural gas industry representatives were putting forward a counterintuitive pitch: hydrogen, made from fossil fuels.

The concept was simple, explained natural-gas proponents serving on the state’s climate-action council. Industrial hydrogen suppliers had long used a process called steam methane reforming (SMR) to produce what the industry calls “gray” hydrogen from natural gas—a system that accounts for 95% of all current hydrogen production, but releases large amounts of carbon emissions. Emissions-free “green” hydrogen can be produced using water and renewable electricity, but that tends to be more expensive than making gray hydrogen. The solution, gas-industry representatives said, was to pursue a kind of carbon compromise. Instead of making expensive green hydrogen, industrial gray hydrogen facilities could be outfitted with carbon capture systems that buried their emissions underground. Voila: A new color in the hydrogen rainbow—safe, clean, abundant “blue” hydrogen to power the economy of the future.

Bob Howarth, a Cornell University climate scientist serving on the N.Y. State carbon-drawdown committee, decided to look into the gas industry’s arguments. “I’m not surprised that people in the natural gas industry are trying to suggest ways that they keep their industry alive,” he says. “But I was skeptical.” Together with Mark Jacobson, an atmospheric scientist at Stanford University, Howarth set out to document the full emissions picture arising from blue hydrogen production.

The results, published Aug. 12 in Energy Science and Engineering, were striking. According to Howarth and Jacobson’s calculations, capturing SMR carbon emissions uses so much energy and results in so much extra leakage of methane—another greenhouse gas that has many times more warming potential than carbon dioxide—that any possible CO2 emissions benefit is nearly canceled out, leaving in place a process that produces about 90% of the emissions of making grey hydrogen. Blue hydrogen is so dirty, in fact, that it’s worse for the climate than burning natural gas for heat in the first place, the researchers found.

But in the meantime, blue hydrogen’s proponents were hard at work. Backed up by industry-funded reports, lobbyists had been pushing blue hydrogen to governments around the world, and the governments were listening. The E.U. released a strategy last summer that proposed expanding blue hydrogen production over the next decade. In the U.K., bureaucrats were crafting a national “hydrogen strategy,” released last month, that gives ample support to blue hydrogen development. In the U.S., legislators are currently negotiating a trillion-dollar infrastructure package that, in its current form, would allocate $8 billion to develop so-called “clean” hydrogen, much of it using fossil fuels. To some extent, Howarth’s work had come too late. “Industry marketing is way out ahead of scientific research and policy sometimes,” he says.

That’s nothing new. From claims that natural gas could be a “bridge” to lower emissions, to promises of decarbonization through “clean coal,” pie-in-the-sky propositions from the fossil-fuel industry have been a feature of climate policy discussions for years. Now, with worldwide political will finally coalescing around an urgent imperative to draw down carbon emissions, natural-gas producers like Shell and BP and distributors like Engie have allied themselves with companies like Air Liquide that have long produced SMR hydrogen to promote blue hydrogen—which looks clean from certain angles, but from others, appears as CO2-intensive as other fossil fuels—as the future of the energy industry.

Industry groups say blue hydrogen will be critical to meeting the world’s climate goals, and can be part of a broad strategy to reduce the world’s greenhouse gas emissions by 2050. But some scientists and experts say the hydrogen industry’s real purpose is to preserve the value of its natural-gas resources and distribution systems under the cover of climate stewardship, locking the world into a technology that will release yet more methane and CO2 emissions for decades to come.


For those of us who have gotten used to seeing hydrogen in the context of sleek concept cars, it can be surprising to learn that large-scale hydrogen production has been around for more than a century. Hydrogen became particularly useful after the early 20th century invention of the Haber process, which combines the gas with nitrogen in the atmosphere to produce ammonia, a compound valuable for its use in fertilizer and explosives. U.S. fossil-fuel companies began operating SMR plants to make hydrogen from natural gas in the 1930s, and the industry grew over the following decades.

Oil refineries also use hydrogen to remove sulfur from crude oil, with many refineries currently producing their own hydrogen on-site from natural gas. About 6% of the world’s natural gas (and 2% of coal, through another carbon-intensive process) is currently used to produce hydrogen, emitting 830 million metric tons of carbon dioxide per year, according to the International Energy Agency. In all, hydrogen production accounts for about 2% of all the world’s carbon emissions.

But when used as a fuel, hydrogen has an environmental advantage over fossil fuels: burning hydrogen releases nothing but water vapor. Amid rising public concern over climate change in the early 2000s, hydrogen underwent a PR renaissance. No longer was it just a dirty industrial feedstock—now it was the fuel of the future. Though most hydrogen at the time was produced using SMR, experts knew large amounts of it could, in theory, be extracted from water using solar or wind power. And though the sun doesn’t always shine and the wind doesn’t always blow, the hydrogen fuel made using those resources could be transported anywhere and used any time, essentially acting like a portable battery to store renewable energy. “Hydrogen fuel cells represent one of the most encouraging, innovative technologies of our era,” said U.S. President George W. Bush in 2003 while announcing a $1.2 billion federal initiative to launch a fledgling hydrogen sector. Promises of a “hydrogen economy” that would see fossil fuels phased out in favor of the lightest element to power everything from stove-top burners to trucks abounded.

Source:

About admin

Check Also

AUS – $117.5 Million in two renewable Hydrogen Hubs

The Western Australian Government is investing up to $117.5 million in two renewable hydrogen hubs, …

Leave a Reply

Your email address will not be published. Required fields are marked *

error: Content is protected !!